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A Common Goal in Problems of Natural Resource Management

To develop a procedure for specifying a sequence of management actions that is
optimal with respect to a particular set of management objectives.

• Sometimes called “management strategy”

• Optimal actions often depend on time or state of an ecological system



EXAMPLES

• Harvest Management

– fisheries management

– wildlife management

– forestry

• Plant or Animal Control (removal of undesirable species)

– pest control

– non-indigenous species

• Stocking and Translocation

– re-establishment of metapopulations

• Habitat Management

– fire management

– water-level manipulation



Formal Solutions of Such Problems Require:

• Finite set of alternative management actions

• Objective function – values the consequences of alternative management actions

– unambiguously defined (usually requires elicitation!!)

– may include multiple objectives

– may include competing objectives

• Predictive model(s) – formulate dynamics of ecological system in terms of
quantities relevant to management objectives

• Monitoring program – follows evolution of the system and responses to
management



Dynamic Programming

A backward-induction algorithm for computing an optimal sequence of decisions
provided:

• objective is a temporal sum of decision values

• system dynamics are modeled as a Markov process

• discrete state space

Discrete state space induces a 2nd “curse of dimensionality”:

• system description is limited in complexity

• posterior uncertainty in model parameters is specified using a set of discrete
parameter values and information states (= model weights)

– adequacy?

– additional theory needed to update model weights



Decision-making is not just sequential – it’s adaptive!

monitoring (collection of data relevant to management objective)

↓
assessment (analysis of data, prediction of consequences of proposed management

actions, selection of actions most likely to achieve management objectives)

↓
implementation (actions or manipulations intended to achieve management

objectives)

↓
monitoring

...

• There is an iterative updating of beliefs that includes learning from data and
making decisions in the presence of uncertainty to achieve an overall
management objective.



Bayesian Inference – a probabilistic approach for

• sequentially updating beliefs (specified in terms of model parameters) as new
information is acquired through monitoring

• predicting the consequences of future management actions, while properly
accounting for posterior uncertainty in the updated beliefs

Decision Theory – a rigorous framework in which

• management objectives are specified as a function of model predictions (and/or
parameters)

• the expected consequences of any particular sequence of management actions are
calculated by integrating over the posterior uncertainty in both model
parameters and predictions

The potential applicability of the Bayesian paradigm has been recognized previously
(Ellison 1996, Bergerud and Reed 1998, Wade 2000 ); however, recent advances in
statistical theory and computation now allow fairly complex, and hopefully more
realistic, models to be fitted and used in decision making.



Inference and Decision-Making in a Problem of Habitat Management
(A Hypothetical Example)

• motivated by an actual problem

• greatly simplified; yet includes several features that are common in problems of
natural resource management

• illustrates the general utility of Bayesian inference and decision theory provided
by modern methods of Bayesian computation



Year 1 Observations

burn chop graze

graze burn chop

chop burn graze

Management Actions

X1 = (x11, . . . ,x91)T

−→

y11 y21 y31

y41 y51 y61

y71 y81 y91

Vegetation

Responses, y1

Year 2 Predictions

? ? ?

? ? ?

? ? ?

−→

Proposed Management Actions

X̃2 = (x̃12, . . . , x̃92)T



Possible Management Objectives

• Target levels of observables

– 50% vegetation cover and 50% open-water habitat

– xx% cover of particular species of plants (desirable vs. exotic)

• Minimize total cost of management actions

• Maximize learning about effects of management actions



Solution of our management problem requires:

• annual monitoring of plot-specific vegetation responses to management

• model(s) of sequence of vegetation responses in each plot

• method for updating model parameters and predictions as new data are acquired

• unambiguous statement of management objectives (defined in terms of model
parameters, model predictions of observables, or costs of management actions)

• procedure for selecting an optimal sequence of future management actions based
on past data



“Centered” Parameterization of Management Actions:

Plot ManagementAction VegetationCover

1 x1t = (1, 0)T ⇒ burning y1t

2 x2t = (1, 0)T ⇒ burning y2t

3 x3t = (0, 1)T ⇒ cutting y3t

...
...

...

n xnt = (0, 1)T ⇒ cutting ynt

Only q = 2 management actions are illustrated for ease of presentation.



Then, consider a first-order autoregressive model for the sequence of vegetation
responses in each plot:
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...
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Each element of β (q × 1) corresponds to the mean vegetation cover associated with a
distinct management action.

Equivalently,

(Yit | xit,β, σ2, ρ, yi,t−1, xi,t−1) ∼



N(xT
itβ, σ2/(1 − ρ2)) if t = 1

N
(
xT

itβ + ρ (yi,t−1 − xT
i,t−1β), σ2

)
if t > 1

(1)



Assuming conditional independence among among plot-specific responses (i.e., no
spatial dependence) yields the joint density

f(yt | Xt,θ, yt−1,Xt−1) =
n∏

i=1

f(yit | xit,θ, yi,t−1,xi,t−1),

where f(yit | xit,θ, yi,t−1,xi,t−1) specifies the conditional distribution in (1) and
θ = (β, ρ, σ2)T .



Bayes Theorem

Provides a coherent, probabilistic framework for updating our beliefs and for
quantifying our uncertainty about model parameters and model predictions as new
observations are made

Inference

At t = 1 the posterior distribution is

p(β, σ2, ρ | y1,X1) =
f(y1 | X1,β, σ2, ρ) π(β, σ2, ρ)∫

f(y1 | X1,θ) π(θ) dθ
.

At t = 2 the posterior distribution is

p(β, σ2, ρ | y1,y2,X1,X2) =
f(y2 | X2,β, σ2, ρ, y1,X1) p(β, σ2, ρ | y1,X1)∫

f(y2 | X2,θ, y1,X1) p(θ | y1,X1) dθ
.

In the tth year, the posterior distribution is

p(θ | y1, . . . ,yt,X1, . . . ,Xt) =
f(yt | Xt,θ, yt−1,Xt−1) p(θ | y1, . . . ,yt−1,X1, . . . ,Xt−1)∫

f(yt | Xt,ψ, yt−1,Xt−1) p(ψ | y1, . . . ,yt−1,X1, . . . ,Xt−1) dψ
.



Prediction

p(ỹt | X̃t, y1, . . . ,yt−1,X1, . . . ,Xt−1) =∫
f(ỹt | X̃t,θ, yt−1,Xt−1) p(θ | y1, . . . ,yt−1,X1, . . . ,Xt−1) dθ

• depends on past (observed) data and proposed management actions X̃t

• integrates over the posterior uncertainty of model parameters

• can be extended for a sequence of proposed management actions , e.g.,
p(ỹt, . . . , ỹt+τ | X̃t, . . . , X̃t+τ , y1, . . . ,yt−1,X1, . . . ,Xt−1)



Selection of Optimal Management Actions

• management objectives are specified in terms of utility (or loss) functions

• “optimal” = management actions with highest expected utility (or lowest expected
loss) averaging over the posterior uncertainty of model parameters and
predictions

Example 1 (Target level of vegetation)
Consider the loss function l(ỹ2, c) =

∑n
i=1 |ỹi2 − c|, where c is a target level of

vegetation cover. The expected loss is

l(X̃2 | y1,X1) = E
(ỹ2|X̃2,y1,X1)

[l(ỹ2, c)]

=
∫

l(ỹ2, c) p(ỹ2 | X̃2,y1,X1) dỹ2.

If an optimal set of future management actions X̃
∗
2 exists, it equals

X̃
∗
2 = arg min

X̃2

[
l(X̃2 | y1,X1)

]
.



Equivocal Responses in Vegetation Cover

At the end of year 1, suppose we observe the following responses to 2 types of
management actions (denoted by X1 = 1 and X1 = 2):

Plot X1 y1

1 1 0.15

2 2 0.55

3 2 0.85

4 1 0.45

Sample mean response to action 1 = 0.30
Sample mean response to action 2 = 0.70

Given these data and a loss function l(ỹ2, 0.50) =
∑n

i=1 |ỹi2 − 0.50|, we need to select
X̃2 that minimizes the total expected loss.

There are 16 (= 24) possible values of X̃2 to be compared:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2

1 1 1 1 2 1 2 2 1 2 2 1 2 2 1 2

Assuming ρ = 0 and mutually independent priors:
π(β1) = π(β2) ∼ U(0, 1)
π(σ−2) ∼ Gamma(.1, .1)

yields posterior mean responses β̂1 = 0.36 and β̂2 = 0.64 and approximately equal
expected losses (1.59, Monte Carlo SE = 0.01) for all 16 values of X̃2.



Favored Responses in Vegetation Cover

At the end of year 1, suppose we observe the following responses to 2 types of
management actions (denoted by X1 = 1 and X1 = 2):

Plot X1 y1

1 1 0.15

2 2 0.55

3 2 0.65

4 1 0.25

Sample mean response to action 1 = 0.20
Sample mean response to action 2 = 0.60

Assuming ρ = 0 and mutually independent priors:
π(β1) = π(β2) ∼ U(0, 1)
π(σ−2) ∼ Gamma(.1, .1)

yields posterior mean responses β̂1 = 0.25 and β̂2 = 0.58.



The expected loss for each of the 16 values of X̃2 is

1 2 3 4 5 6 7 8

1.55 1.49 1.49 1.46 1.50 1.51 1.47 1.45

9 10 11 12 13 14 15 16

1.46 1.41 1.46 1.46 1.41 1.41 1.41 1.36

(Monte Carlo SE = 0.01)

Thus, X̃2 = (2, 2, 2, 2)T is the optimal set of management actions.



Equivocal, but Correlated, Responses in Vegetation Cover

At the end of year 2, suppose we observe the following responses to 2 types of
management actions:

Plot X1 y1 X2 y2

1 1 0.15 1 0.25

2 2 0.55 2 0.50

3 2 0.85 2 0.75

4 1 0.45 1 0.50

Sample mean response to action 1 = 0.3375
Sample mean response to action 2 = 0.6625

Assuming mutually independent priors:
π(β1) = π(β2) ∼ U(0, 1)
π(σ−2) ∼ Gamma(.1, .1)
π(ρ) ∼ U(−1, 1)

yields posterior mean responses β̂1 = 0.35 and β̂2 = 0.65. The posterior of ρ is highly
skewed: mean = 0.37, median = 0.43.



Histogram of the posterior distributions of β1, β2, and ρ estimated from
the 2 years of vegetation responses
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The expected loss for each of the 16 values of X̃3 is

1 2 3 4 5 6 7 8

1.077 1.008 1.069 1.005 1.143 1.077 1.151 1.077

9 10 11 12 13 14 15 16

1.007 1.077 1.148 1.072 1.147 1.071 1.000 1.074

(Monte Carlo SE = 0.005)

Thus, design #15 (X̃3 = (2, 2, 2, 1)T ) provides the optimal set of management
actions; however, designs #2, #4, and #9 provide almost the same expected loss
given the Monte Carlo error in the estimates.



Modeling Other Sources of Uncertainty

• Environmental variability

• Errors in sampling, measurement, or application of management actions

• Alternative forms of temporal dependence

• Spatial dependence and variability



Example 2 (Averaging posterior predictions over posterior model
uncertainty)

Let {H1, H2, . . . , HK} denote the set of K candidate models, and let {θ1,θ2, . . . ,θK}
denote their parameters.

At t = 1 the posterior distribution of θk for the kth model is

p(θk | y1,X1, Hk) =
f(y1 | X1,θk, Hk) π(θk | Hk)

m(y1 | X1, Hk)
,

where the marginal likelihood of the data given model Hk

(= m(y1 | X1, Hk) =
∫

f(y1 | X1,θk, Hk) π(θk | Hk) dθk) is finite provided
π(θk | Hk) is proper.

If K is finite (and not too large), the posterior uncertainty in a particular model also
may be computed using Bayes theorem:

p(Hk | y1,X1) =
m(y1 | X1, Hj) π(Hk)∑K

j=1 m(y1 | X1, Hj) π(Hj)

assuming
∑K

j=1 π(Hj) = 1.



The values of p(Hk | y1,X1) are used to weigh the model-specific predictions and
thereby average over model uncertainty:

p(ỹ2 | X̃2,y1,X1) =
K∑

k=1

p(ỹ2 | X̃2,y1,X1, Hk) p(Hk | y1,X1)

In practice, each draw from [ỹ2 | X̃2,y1,X1, Hk] is selected with probability
p(Hk | y1,X1) to obtain a draw from [ỹ2 | X̃2,y1,X1].



Example 3 (A sequence of management actions)

We cannot seriously expect our model assumptions to remain valid indefinitely long;
however, suppose we have observed X1 and y1 and want to predict an optimal
sequence of future management actions (X̃

∗
2, X̃

∗
3, . . . , X̃

∗
τ ) to be implemented in the

next τ − 1 years.

Then minimize the expected loss

l(X̃2, . . . , X̃τ | y1,X1) = E
(ỹ2,...,ỹτ |X̃2,...,X̃τ ,y1,X1)

[l(ỹ2, . . . , ỹτ , c)]

=
∫

l(ỹ2, . . . , ỹτ , c) p(ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) dỹ

.=
1
R

R∑
r=1

l(ỹ(r)
2 , . . . , ỹ(r)

τ , c)

where ỹ = (ỹ2, . . . , ỹτ )T .



Based on our model, random draws from [ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1] may be
computed by taking random draws from an appropriately ordered sequence of
conditional posterior predictive distributions since

p(ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) = p(ỹ2 | X̃2,y1,X1) p(ỹ3 | ỹ2, X̃2, X̃3,y1,X1)

· · · p(ỹτ | ỹ2, . . . , ỹτ−1, X̃2, . . . , X̃τ ,y1,X1).



Example 4 (Dual-control problem)

Express competing management objectives in terms of:

u1(ỹ2, c) = utility of achieving target level of vegetation cover

u2(θ) = utility of learning about model parameters identified with treatment effects
(e.g., Kullback-Leibler distance between posteriors [θ | ỹ2, X̃2,y1,X1] and
[θ | y1,X1] ).

Specify a joint utility function

u(ỹ2,θ, c, γ, φ) = γ · u1(ỹ2, c) + φ · u2(θ)

where γ and φ are nonnegative constants.



The expected utility is

u(X̃2 | y1,X1) = E
(θ,ỹ2|X̃2,y1,X1)

[γ · u1(ỹ2, c) + φ · u2(θ)]

=
∫

γ u1(ỹ2, c) p(ỹ2 | X̃2,y1,X1) dỹ2 +
∫ ∫

φ u2(θ) p(θ | ỹ2, X̃2,y1,X1) p(ỹ2 | X̃2,y1,X1) dθ dỹ2

= E
(ỹ2|X̃2,y1,X1)

[
γ · u1(ỹ2, c) + E

(θ|ỹ2,X̃2,y1,X1)
[φ · u2(θ)]

]

If an optimal set of future management actions X̃
∗
2 exists, it is

X̃
∗
2 = arg max

X̃2

[
u(X̃2 | y1,X1)

]
.



Summary and Research Needs

• Modern methods of Bayesian inference and decision making are capable of
solving relatively complex problems of natural resource management.

– spatial and temporal dependence

– partial controllability

– model uncertainty

• We anticipate widespread use of these methods, particularly as software is
developed for computing posterior distributions of model parameters and
predictions (see Appendix C of Carlin and Louis 2000 ).

• Computationally efficient algorithms are needed for determining optimal
sequences of future management actions.



(Full) Conditional Posterior Distributions

If inferences are based on 1 year of data:

p(τ | β, ρ0,y1,X1) ∝ τn/2+ε1−1 exp
[
−τ

(
ε2 +

d1(1 − ρ2
0)

2

)]

p(βj | βk( �=j), τ, ρ0,y1,X1) ∝ exp
[
−τd1(1 − ρ2

0)
2

]

where τ = 1/σ2 and d1 =
∑n

i=1(yi1 − xT
i1β)2

τ | β, ρ0,y1,X1 ∼ Gamma
(

ε1 + n/2, ε2 +
d1(1 − ρ2

0)
2

)



(Full) Conditional Posterior Distributions

If inferences are based on 2 years of data:

p(τ | β, ρ,y1,y2,X1,X2) ∝ τn+ε1−1 exp
[

− τ
(
ε2 +

d1(1 − ρ2)
2

+
d2

2

)]

p(βj | βk( �=j), | τ, ρ,y1,y2,X1,X2) ∝ exp
[

− τ
(d1(1 − ρ2)

2
+

d2

2

)]

p(ρ | β, τ,y1,y2,X1,X2) ∝ (1 − ρ2)n/2 exp
[

− τ
(d1(1 − ρ2)

2
+

d2

2

)]

where τ = 1/σ2, d1 =
∑n

i=1(yi1 −xT
i1β)2, and d2 =

∑n
i=1(yi2 −xT

i2β− ρ(yi1 −xT
i1β))2

τ | β, ρ,y1,y2,X1,X2 ∼ Gamma
(

ε1 + n, ε2 +
d1(1 − ρ2)

2
+

d2

2

)



WinBugs code for autoregressive model of waterfowl habitat

model {
SigmaInv < − tau*(1.-rho*rho)

for (i in 1:n) {
y1[i] ∼ dnorm(beta[x1[i]], SigmaInv)

mu2[i] < − beta[x2[i]] + rho*(y1[i]-beta[x1[i]])

y2[i] ∼ dnorm(mu2[i], tau)

for (j in 1:ndesigns) {
mu[i,j] < − beta[xp[i,j]] + rho*(y2[i]-beta[x2[i]])

yp[i,j] ∼ dnorm(mu[i,j], tau)

loss[i,j] < − abs(yp[i,j] - ytarget)

}
}
for (j in 1:ndesigns) {

totalLoss[j] < − sum(loss[,j])

}
beta[1]∼ dunif(0,1)

beta[2] ∼ dunif(0,1)

tau ∼ dgamma(.1,.1)

rho ∼ dunif(-1,1)

}



WinBugs code for autoregressive model of waterfowl habitat

DATA

list(n=4, ndesigns=16, y1=c(0.15, 0.55, 0.85, 0.45), y2=c(0.25, 0.50, 0.75,

0.50), x1=c(1,2,2,1), x2=c(1,2,2,1), ytarget=0.5)

xp[,1] xp[,2] xp[,3] xp[,4] xp[,5] xp[,6] xp[,7] xp[,8] xp[,9]

xp[,10] xp[,11] xp[,12] xp[,13] xp[,14] xp[,15] xp[,16]

1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2

1 1 1 1 2 1 2 2 1 2 2 1 2 2 1 2

INITS

list(beta=c(.25,.75), tau=25.0, rho=0.0)


